LECTURE II:

□ : ORIGIN OF THE SEESAW SCALE AND IMPLICATIONS FOR UNIFICATION

Why Seesaw is theoretically so appealing?

 $ightharpoonup Adding N_R$ to std model makes fermion spectrum quark-lepton symmetric.

Makes the spectrum also left-right symmetric: under Parity

$$\begin{pmatrix} u_L \\ d_L \end{pmatrix} \leftrightarrow \begin{pmatrix} u_R \\ d_R \end{pmatrix}; \quad \begin{pmatrix}
u_L \\ e_L \end{pmatrix} \leftrightarrow \begin{pmatrix} N_R \\ e_R \end{pmatrix};$$

Expanding of weak gauge symmetry

Standard model: $\partial^{\mu}J_{\mu}=0$ but Tr(B-L) and $Tr(B-L)^3$ both $\neq 0$;

Add RH neutrino to SM and both Tr(B-L) and $Tr(B-L)^3$ both =0;

This means (B-L) is a gauge symmetry !!

and the electroweak gauge group expands to $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$; i.e. the left-right symmetric model of weak interactions.

Some details of left-right symmetric models:

™ Details

- ightharpoonup Gauge group $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$
- > Matter: $SU(2)_L$ Doublets: $Q_L \equiv \begin{pmatrix} u_L \\ d_L \end{pmatrix}$; $\psi_L \equiv \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$; $SU(2)_R$ doublets: $Q_R \equiv \begin{pmatrix} u_R \\ d_R \end{pmatrix}$; $\psi_R \equiv \begin{pmatrix} \nu_R \\ e_R \end{pmatrix}$

Higgs:
$$\phi(2,2,0) \equiv \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix}$$
;
$$\Delta_R(1,3,+2) \equiv \begin{pmatrix} \Delta^+/\sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+/\sqrt{2} \end{pmatrix}$$

$$\mathcal{L}_Y = h_u \bar{Q}_L \phi Q_R + h_d \bar{Q}_L \tilde{\phi} Q_R + h_e \bar{\psi}_L \tilde{\phi} \psi_R + h.c.$$

$$+ f(\psi_R \psi_R \Delta_R + L \leftrightarrow R)$$

Fermion masses

Masses arise from symmetry breaking

$$>$$
 $<\phi^0>=\begin{pmatrix}\kappa&0\\0&\kappa'\end{pmatrix}$ and $<\Delta^0_R>=v_R$

- $>\!\!\!> \, <\phi>$ gives masses to quarks and charged leptons only
- $> m_{\nu} \neq 0$ arises from the seesaw matrix (coming up).

Features of left-right symmetric models

☞ other features

1. weak interactions become parity conserving

$$\mathcal{L}_{wk} = \frac{g}{2\sqrt{2}}(\vec{W}_{\mu,L}\cdot\vec{J}_L^{\mu} + \vec{W}_{\mu,R}\cdot\vec{J}_R^{\mu})$$

- 2. Electric charge: $Q = I_{3L} + I_{3R} + \frac{B-L}{2}$ Involves all physical quantum numbers
- 3. This generalization of Gell-Mann-Nishijima formula to weak interactions implies that:

 $\Delta I_{3R}=-rac{B-L}{2}$ i.e. Neutrino is a Majorana mass purely because of group theory and its mass is linked to parity violation Π

R. N. M., Pati; Senjanovic, (1974-75)

Neutrino mass linked to parity violation

Questions for Left-right models

- 1. Why are low energy weak int. V-A?
- 2. Why $m_{\nu} \ll m_{u,d,e}$?
- 3. How high is the Parity breaking scale?
- 4. How to experimentally test the idea?

Both questions have the same answer:

lacktriangledown BREAK PARITY AT SCALE MUCH ABOVE THE W_L MASS

$$>\!\!\!> SU(2)_L imes SU(2)_R imes U(1)_{B-L}
ightarrow G_{std}
ightarrow U(1)_{em}$$
 $M_{
u,N} = egin{pmatrix} 0 & 0 & 0 \ 0 & M_R \end{pmatrix}
ightarrow egin{pmatrix} fv_L & h_
u v \ h_
u^T v & fv_R \end{pmatrix}$ (type II SEESAW)

- > As before, $m_{\nu} \simeq f v_L \frac{h_{\nu}^2 v^2}{f v_R}$; $(v_L \sim \frac{v_{wk}^2}{v_R})$ Strength of V+A currents $\propto \frac{1}{v_R^2}$; as the scale of parity violation $v_R \to \infty$, $m_{\nu} \to 0$;
- > SMALLNESS OF m_{ν} CONNECTED TO THE SUPPRESSION OF V+A currents.
- \succ Existence of B-L symmetry and left-right symmetry is the first thing we learn from ν -mass discovery !

Implication of Parity for seesaw

New contribution to seesaw:

$$m_
u \simeq f rac{v_{wk}^2}{v_R} - rac{h_
u^2 v_{wk}^2}{f v_R}$$
; (Type II seesaw)

Figure 11: Feynman diagram for type II seesaw

Parity → **Type II** seesaw

TeV seesaw scale in LR models

The type I seesaw formula is given by:

$$\mathcal{M}_{\nu} = -M_D^T M_R^{-1} M_D \sim -\frac{h_{\nu}^2 v_{wk}^2}{f v_R}$$

Expt: $m_{\nu_3} \sim 0.05$ eV; if $v_R \sim$ TeV, means $h_{\nu} \sim 10^{-6}$; (Compare this with electron Yukawa coupling in the standard model (= 3×10^{-6})- not very different !!)

It is quite OK to have TeV scale seesaw.

New W_R and Z' bosons in the TeV range; can be explored at LHC (see later)

: NEUTRINO MASS AND GRAND UNIFICATION

Basic idea of grand unification

Pati, Salam; Georgi, Glashow; Georgi, Quinn, Weinberg

B

- All forces unify at some high scale;
- All matter i.e. quarks and leptons unify at that scale:
- A new symmetry (local) symmetry of physics that embodies the SM symmetry emerges at that scale and above.

GRAND UNIFICATION

™ Why Grand unify?

- Unification of quarks and leptons provides hope for understanding lepton masses in terms of quark masses- a first step towards solving the flavor puzzle?
- > It explains electric charge quantization.

Standdard model does not grand unifiy!

□ Gauge coupling runnung is determined by the low energy theory.

For SM, the equations are:

$$\frac{d\alpha_i^{-1}}{dt} = \frac{b_i}{2\pi}$$

with
$$b_1 = -\frac{4}{3}N_g - \frac{1}{3}T_H$$
; $b_{2,3} = \frac{11N}{3} - \frac{4}{3}N_g - \frac{1}{3}T_H$ with $N=2,3$

Figure 12: Coupling unification in supersymmetric theories

Note that SU(2) and SU(3) couplings meet at 10^{16} GeV but not U(1); Supersymmetry cures that.

Example of grand unification

SUSY at TeV scale and no new physics until GUT scale;

 $b_1 = -\frac{33}{5}; \ b_{2,3} = \ (3N - 2N_g - T_H);$ all couplings meet nicely.

Figure 13: Coupling unification in supersymmetric theories

 $M_U \simeq 2 \times 10^{16}$ GeV;

No SUSY but simple GUT

No SUSY and no new physics till SEESAW scale and the LR Symmetry till GUT

(B) $G_{STD} \to SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(3)_c \to$ (with no supersymmetry) and $M_{B-L} \sim 10^{14}$ GeV (the seesaw scale).

Figure 14: Coupling unification in non-supersymmetric left-right theories with int. seesaw scale

Requirement of coupling unification predicts seesaw scale around 10^9 - $10^{13}~{\rm GeV}$

Proton decay: Key test of grand unification

Example of simple SU(5) model of Georgi and Glashow:

Fermions:
$$\bar{\mathbf{5}} = \begin{pmatrix} d^c \\ d^c \\ d^c \\ \nu \\ e^- \end{pmatrix}$$
 and $\mathbf{10} = \begin{pmatrix} 0 & u_3^c & -u_2^c & u_1 & d_1 \\ & 0 & u_1^c & u_2 & u_3 \\ & & 0 & u_3 & d_3 \\ & & & e^+ \\ & & & 0 \end{pmatrix}$

Quarks and leptons in the same multiplet and therefore gauge bosons connect quarks and leptons as well as quarks to anti-quarks leading to proton decay.

Figure 15: Proton decay in GUT theories- Gauge boson exchange

□: Present in all simple GUT theories: fairly model independent except for the overall unification scale.

$$A(p \rightarrow e^+\pi^0) \sim \frac{g_U^2}{M_U^2}$$

Prediction: $\tau_{p\to e^+\pi^0}\sim 10^{36\pm1}\left(\frac{M_U}{2\times 10^{16}~GeV}\right)^4~{\rm yrs}$

Present lower limit: $\tau_{p \to e^+\pi^0} \ge 5 \times 10^{33}$ yrs.

Some of Super-K, IMB3, Soudan2 data on other proton decay modes

B

mode	Lower limit in 10^{32} yrs
$p \to e^+ + \pi^0$	50
$p \to \bar{\nu} K^+$	23
$n \to \bar{\nu} + K^0$	1.3
$p \to \mu^+ + K^0$	13
$p \to e^+ + K^0$	10
$p \to \mu^+ \pi^0$	43
$p \to \gamma e^+$	98
$p \to \gamma \mu^+$	82
$n \to e^+ \pi^-$	1

SUSY SU(5) model

The simplest GUT model (circa 1980s)

> Fermions:
$$\overline{\mathbf{5}} = \begin{pmatrix} d^c \\ d^c \\ v \\ e^- \end{pmatrix}$$
 and $\mathbf{10} = \begin{pmatrix} 0 & u_3^c & -u_2^c & u_1 & d_1 \\ 0 & u_1^c & u_2 & u_3 \\ 0 & u_3 & d_3 \\ e^+ \\ 0 \end{pmatrix}$

- \succ : Higgs $\mathbf{5} \oplus \mathbf{\overline{5}} \oplus \mathbf{24}$.
- \triangleright Predicts: at M_U , $m_b=m_{\tau}$; very good prediction

Also predicts $m_s=m_\mu; \quad m_d=m_e; \text{ VERY BAD PREDICTION!!}$

- No explanation of neutrino mass:
- > Proton decay problem:

Proton decay in SUSY SU(5)

New graphs contribute to proton decay in GUT theories due to the existence of superpartners

Non-susy theories: P-decay operator: $QQQL/M_U^2$ whereas SUSY theories, it is $QQ\tilde{Q}\tilde{L}_s/M_U$; Note the change in power dependence !!

Figure 16: Dominant Diagram for proton decay in supersymmetric GUT theories

Decay mode $p \to \bar{\nu} M^+$; Life time: $(\tau_P)^{-1} \simeq [\frac{f^2}{M_U MS}]^2 \left(\frac{\alpha}{4\pi}\right)^2 m_p^5$ Implies $\tau_{p \to K^+ \bar{\nu}} \leq (10^{32})^{-1}$ yrs

Expt: $\tau_{p\to K^+\bar{\nu}}\geq 3\times 10^{33}$ yrs.

Possible to cure it by giving up predictivity !!

$m_{ u}$ and Grand unification

B

$$M_U \simeq 2 \times 10^{16}$$
 GeV; not far from $M_{seesaw} \sim 2 \times 10^{14}$ GeV

$$M_R \simeq M_U$$

B

- > raises the hope that seesaw scale and GUT scale are same;
- ➤ Perhaps neutrino masses and mixings can be predicted due to higher symmetry of GUT theories which will reduce number of free parameters;

SO(10) SUSY GUT and neutrinos

Georgi; Fritzsch and Minkowski, 75

unification of all 16 fermions of one generation

$$> \begin{pmatrix} \frac{u}{d} & \frac{u}{d} & \frac{u}{d} & \nu \\ \frac{u}{d} & \frac{u}{d} & e \end{pmatrix}_{L,R} \text{ into } \mathbf{16} \text{ dim. rep of SO(10)}$$

- ightharpoonup Contains the N_R needed for seesaw automatically
- Contains the B-L subgroup which broken appropriately, gives R-parity as a natural symmetry and hence a stable dark matter
- > None of these properties hold for SU(5)

Some useful group theory for SO(10)

SO(10) is almost like Lorentz group which is SO(3,1);

Just like Lorentz group has spinor representation which is 4-dimensional and splits into two chiral 2-comp representations, SO(10) has a spinor rep which is 16-dim.

The general formula for the dim of of spinor rep of SO(2N) is 2^{N-1} dimensional.

Like there are Lorentz vectors and tensors, SO(10) has vector and tensor reps:

$$H_{\mu}=$$
 10; $S_{\mu\nu}=$ 54 dim (sym); $A_{\mu\nu}=$ 45 (anti-sym.); $\Sigma_{\mu\nu\lambda}=$ 120 (anti-sym); $\Delta_{\mu\nu\lambda\sigma\tau}=$ 126 etc.

 $16\otimes 16=10\oplus 120\oplus 126$ helps to write Yukawa couplings that are SO(10) invariant.

Spinor of SO(10) for fermions of SM

Breaking SO(10) down

B

- \rightarrow (i) SO(10) \rightarrow SU(5) \rightarrow std model or
- \gt (ii) SO(10) $\rightarrow SU(2)_L \times SU(2)_R \times SU(4)_c \rightarrow \mathsf{std} \mathsf{model}$
- > In either case one must break B-L symmetry

Predictions from one SO(10) model

B

- > Use only **126** to break B-L
- ightharpoonup Yukawa coupling $\mathcal{L}_Y = h_{ab}\psi_a\psi_bH + f_{ab}\psi_a\psi_b\overline{\Delta}$
- ightharpoonup two pairs of Higgs doublets: one (H_u,H_d) from H and another from $\overline{\Delta}$
- ightharpoonup Counting of parameters- 3 from h,6 from f plus 4 vevs minus $M_Z \to {\sf total}$ of 12 parameters; vrs
 - 10 (quarks)+3 (e, $\mu + \tau$) + 18 for seesaw in the standard model (total of 31)

Predicting neutrino masses and mixings in minimal SO(10) with 126

☞ CP conserving case as an example

- ightharpoonup Input: masses of (e, μ, τ) , six quarks plus three CKM angles;
- > All parameters of the fermion sector are determined; hence all (but one) neutrino masses and mixing angles predicted

B

Equations for fermion mass matrices

$$M_u = h < H_u > +f < \Delta_u >$$
 $M_d = h < H_d > +f < \Delta_d >$
 $M_e = h < H_d > -3f < \Delta_d >$
 $M_{\nu} = h < H_u > -3f < \Delta_u >$

> It follows that

$$f = \frac{1}{4 < \Delta_d >} (M_d - M_\ell)$$
 (Relation valid at GUT scale)

Large mixing from type II seesaw

Triplet vev dominance in seesaw

- > Seesaw formula in SO(10) $\mathcal{M}_{\nu} \simeq f \frac{v_{wk}^2}{v_R} M_{\nu D} f v_R^{-1} M_{\nu D}; \text{ (Type II seesaw)}$
- > Suppose the first term dominates \rightarrow (A) $\mathcal{M}_{\nu} \simeq \frac{v_{wk}^2}{4v_R < \Delta_d >} (M_d M_\ell) \equiv c(M_d M_\ell)$ $c \sim 10^{-10}$
- > (B): $M_\ell = c_u M_u + c_d M_d$; This means $U_\ell \sim 1 + O(\lambda)$ and U_ν determines U_{PMNS} !!.

What is U_{ν}

 $rac{1}{2}b- au$ mass convergence and large $heta_A$

$$\mathcal{M}_{\nu} = c(M_d - M_{\ell});$$
But $\mathcal{M}_{\ell,d} = m_{\tau,b} \begin{pmatrix} d\epsilon^4 & a\epsilon^3 & b\epsilon^3 \\ a\epsilon^3 & \epsilon^2 & \epsilon^2 \\ b\epsilon^3 & \epsilon^2 & 1 \end{pmatrix}$ where $\epsilon \sim \lambda \simeq 0.22;$

$$> \mathcal{M}_{\nu} = m_b \begin{pmatrix} \lambda^4 & \lambda^4 & \lambda^3 \\ \lambda^4 & \lambda^2 & \lambda^2 \\ \lambda^3 & \lambda^2 & (1 - m_{\tau}/m_b) \end{pmatrix}$$

 \succ So the question now is what is $\frac{m_{\tau}}{m_b}$ at GUT scale ?

$b-\tau$ masses change with scale

ightharpoonup At M_Z , $m_b \sim 1.7 m_{ au}$;

but all Coupling constants run with energy- so this ratio changes.

define
$$Y_a = \frac{h_a^2}{4\pi}$$
; $t = ln\mu$
Then $\frac{dlnY_b}{dt} = 6Y_b + Y_t - \frac{7}{15}\alpha_1 - \frac{16}{3}\alpha_3 - 3\alpha_2$
 $\frac{dlnY_\tau}{dt} = 4Y_\tau - \frac{9}{15}\alpha_1 - 3\alpha_2$

Since $\frac{16}{3}\alpha_3$ dominates, it pulls b-quark mass down very fast at high energies;

$$\frac{m_b}{m_ au}(M_U) = \frac{m_b}{m_ au}(M_Z)[2.5A_t^{-1/2}]^{-1};$$
 for $h_t \simeq 1$, $A_t^{-1/2} \sim 0.8$;

So m_b gets closer to m_τ and in supersymmetry, there is a parameter $\tan\beta$ and as this changes, the b_τ unification works even better e.g. $\tan\beta\sim 10$.

$b-\tau$ mass convergence and large neutrino mixing

For
$$m_b \sim m_\tau (1 + O(\lambda^2))$$

$$> \mathcal{M}_{\nu} = m_b c \begin{pmatrix} \lambda^4 & \lambda^4 & \lambda^3 \\ \lambda^4 & \lambda^2 & \lambda^2 \\ \lambda^3 & \lambda^2 & \lambda^2 \end{pmatrix} = m_b c \lambda^2 \begin{pmatrix} \lambda^2 & \lambda^2 & \lambda \\ \lambda^2 & 1 + \lambda & 1 \\ \lambda & 1 & 1 \end{pmatrix}$$

- ightharpoonup Previous discussion of mass matrix for normal hierarchy ightharpoonup both atmospheric and solar mixings large
- > Furthermore, $\frac{\Delta m_{\odot}^2}{\Delta m_A^2} \sim \lambda^2 \gg (m_{\mu}/m_{\tau})^2$ as required by data $\theta_{13} \simeq \frac{V_{ub}}{1-m_{\tau}/m_b} \simeq \lambda$

(close to the present upper limit)

Other related recent papers with 126 Higgs

Fukuyama and Okada, (2002); B. Bajc, Alejandra Melfo, Goran Senjanovic, Francesco Vissani, hep-ph/0402122;

- H. S. Goh, R. N. M., S. Nasri and S. P. Ng, PLB(2004);
- T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac and
- N. Okada, arXiv:hep-ph/0401213;
- C. S. Aulakh and A. Giridhar, hep-ph/0204097; Goh, RNM, Nasri, 2004
- S. Bertolini, M. Frigerio and M. Malinsky, arXiv:hep-ph/0406117; Wei-Min Yang and Zhi-Gang Wang, hep-ph/0406221 Dutta, Mimura, RNM, hep-ph/0406262;
- : Case (i) Goh, RNM, Ng; Babu, Macesanu; Bertolini and Malinsky, Schwetz;

SO(10) with extra symmetries: Chen, Mahanthappa (2000); Medeiro Verzilas, King and Ross (2006);..